

SR 8100 / SD 477x Système d'infusion

SR 8100 est un système époxy à deux composants avec une viscosité très basse à température ambiante. Il a été spécialement développé pour l'injection basse pression et l'infusion.

Excellentes performances mécaniques.

Résistance en température, T_{G1 onset} max : 90 °C

		SD 4775	SD 4773	SD 4771
Réactivité type		Rapide	Intermédiaire	Lent
Viscosité initiale (mPa.s)	20 °C	730	380	200
	30 °C	350	240	165
Pot Life (100 g)	20 °C	01 h 25	03 h 00	04 h 40
	30 °C	30 min	45 min	01 h 40
Proportions de mélange				
	En poids	100 / 29	100 / 29	100 / 29
	En volume	100 / NR	100 / NR	100 / NR
Résistance maximum	N/mm²	74	75	73
Allongement max en traction	%	5,3	4,4	4,7
Tg max onset	°C	86	87	90
Temps de gel (1 mm)	20 °C	06 h 20	11 h 30	20 h 50
	30 °C	03 h 10	05 h 50	11 h 00
Temps optimal d'infusion	20 °C	15 min	01 h 40	03 h 25
	30 °C	35 min	01 h 20	03 h 00
Temps d'infusion max	20 °C	03 h 10	06 h 10	12 h 20
	30 °C	01 h 50	03 h 25	06 h 50
Temps de coupure du vide	20 °C	10 h 00	18 h 20	34 h 30
	30 °C	04 h 25	09 h 00	17 h 50
Temps de démoulage	20 °C	19 h 00	34 h 30	62 h 30
	30 °C	09 h 30	17 h 30	33 h 00

Systèmes époxy à deux composants

Développé spécialement pour l'injection basse pression et l'infusion.

Ces systèmes ont une viscosité très basse à température ambiante

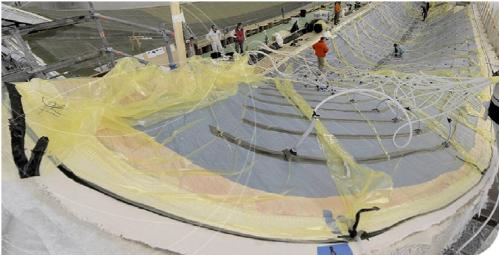
Excellentes performances mécaniques

Résistance en température, T_{G1 onset} max : 90 °C

Profil:

Mise en œuvre à partir de 18 °C et avec une hygrométrie idéalement inférieure à 70 %. Choisir le durcisseur selon la température ambiante, la mise en œuvre et la taille de la pièce à réaliser.

Durcissement à température ambiante puis post-cuisson de 40 à 60 ° C


Applications:

Infusion, RTM, outillage ...

Certifié DNV:

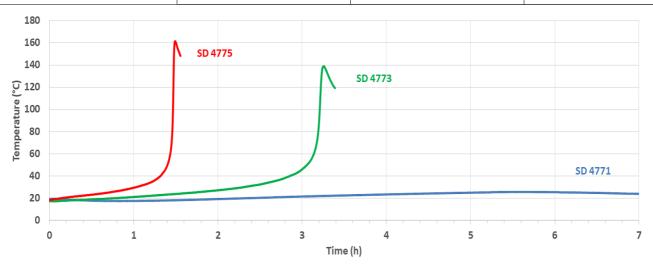
DNV class programme DNV-CP-0089 – Type approval – Epoxy resin systems DNV rules for classification - High speed and light craft DNV standard DNV-ST-0342 - Craft

Résine époxy SR 8100

Aspect		Liquide
Couleur		Jaune
Couleur Gardner		≤ 2
Viscosité (mPa.s)	15 °C	2350 ± 450
	20 °C	1250 ± 250
	25 °C	765 ± 155
	30 °C	475 ± 95
Densité	20 °C	1,16
Stabilité au stockage (mois)	23 °C	24

Durcisseur(s)

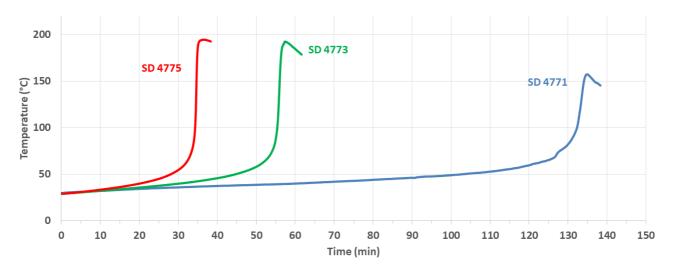
		SD 4775	SD 4773	SD 4771
Aspect		Liquide	Liquide	Liquide
Couleur		Jaune clair	Jaune	Incolore
Couleur Gardner		≤ 5	≤ 4	≤ 1
Réactivité type		Rapide	Intermédiaire	Lent
Viscosité (mPa.s)	15 °C	200 ± 40	51 ± 10	13 ± 3
, ,	20 °C	135 ± 30	41 ± 8	11 ± 2
	25 °C	95 ± 20	31 ± 6	9 ± 2
	30 °C	70 ± 15	24 ± 5	7 ± 1
Densité	20 °C	1,00	0,98	0,94
Stabilité au stockage (mois)	23 °C	24	24	24



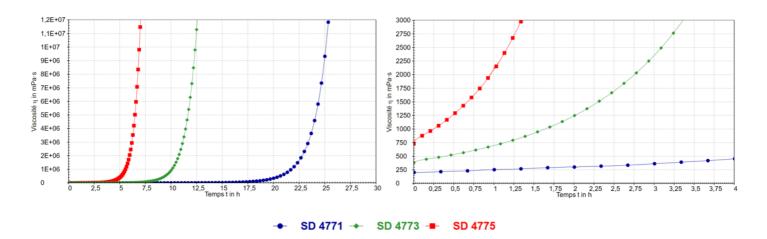
Mélange(s) SR 8100 / SD 477x - DNV

		SD 4775	SD 4773	SD 4771
Aspect		Liquide	Liquide	Liquide
Couleur		Jaune clair	Jaune clair	Jaune clair
Proportions de mélange				
En poids		100 / 29	100 / 29 100 / 29	
En volu	ıme	100 / NR	100 / NR	100 / NR
Viscosité initiale (mPa.s) 20 °C		730	380	200
	30 °C	350	240	165
Densité 20 °C		1,19	1,18	1,17
	I			

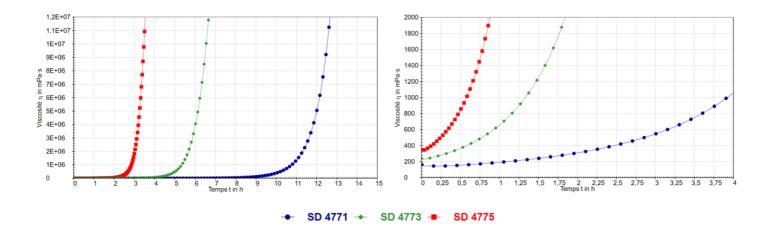
Réactivité 20 °C sur 100 g SR 8100 / SD 477x - DNV


	SD 4775	SD 4773	SD 4771
Température maximale (°C)	162	139	26
Temps au pic exothermique	01 h 30	03 h 15	05 h 25
Temps pour atteindre 50 °C	01 h 25	03 h 00	-

Réactivité 30 °C sur 100 g SR 8100 / SD 477x - DNV


	SD 4775	SD 4773	SD 4771
Température maximale (°C)	195	193	157
Temps au pic exothermique	35 min	55 min	02 h 15
Temps pour atteindre 50 °C	30 min	45 min	01 h 40

Réactivité sur un film de 1 mm d'épaisseur


20 °C

Tel: +33 (0)4 42 42 30 20

30°C

Post-cuisson

Les valeurs thermomécaniques d'un système époxy peuvent être optimisées par la mise en œuvre d'un cycle de post cuisson. Le laboratoire Sicomin utilise des cycles prédéfinis afin d'éditer les fiches techniques et comparer les systèmes entre eux. Ces cycles expérimentaux sont adaptables à vos applications spécifiques, prenant en compte les paramètres suivants :

- Système époxy sélectionné (Tg max)
- Moyen de chauffe disponible
- Dimension et échantillonnage de la pièce
- Nature de l'outillage (conductivité thermique du matériau)

De nombreux systèmes peuvent fournir de bonnes propriétés mécaniques après un durcissement à température ambiante et dès 18°C durant 24 à 48 h avant démoulage.

Les propriétés mécaniques progressent très rapidement avec une température légèrement plus élevée de l'ordre de 40°C pendant plusieurs heures.

Les systèmes Epoxy à haute Tg et durcisseurs lents et extra-lents nécessitent impérativement une post-cuisson à plus haute température. Il est possible de débuter le cycle dès le passage du pic exothermique mais également de démarrer la post-cuisson plus tard après assemblage des différents composants et avant les opérations de finitions. Si la nature des modèles et outillages n'est pas adaptée aux hautes températures, nous conseillons de réaliser les premiers paliers jusqu'à la température maximale admissible puis, après refroidissement et démoulage, de poursuivre le cycle sur un conformateur adapté.

Pour un système époxy conventionnel, nous conseillons la réalisation d'un cycle par palier de 20°C pendant 4h.

Exemple pour un système époxy Tg max 100°C:

4h à 40°C + 4h à 60°C + 4h à 80°C + refroidissement à l'ambiante avant démoulage.

Il existe de nombreux systèmes Epoxy à cycle de cuisson court et à haute température ne rentrant pas dans ce schéma de post-cuisson (pultrusion, compression à chaud, pre-preg). Pour ces systèmes, la cuisson initiale permet d'obtenir les performances thermomécaniques maximales sans post-cuisson.

Nous vous invitons à vous rapprocher de notre service technique pour vos questions à ce sujet.

Propriétés mécaniques sur résine pure :

		SR 8100 / SD 4775			SR 8100 / SD 4773		
		24 h TA 24 h 40 °C	24 h TA 16 h 60 °C	24 h TA 8 h 80 °C	24 h TA 24 h 40 °C	24 h TA 16 h 60 °C	24 h TA 8 h 80 °C
Traction							
Module	N/mm ²	3 340	3 165	3 115	3 390	3 100	3 230
Résistance maximum	N/mm ²	73	74	74	74	74	75
Résistance à la rupture	N/mm ²	64	72	72	64	73	75
Allongement à l'effort maximum	%	3,9	4,8	5,3	3,7	5	4,4
Allongement à la rupture	%	5,9	6,2	7,1	5,4	6,1	4,7
Flexion							
Module	N/mm ²	3 300	2 835	3 335	3 320	3 065	3 080
Résistance maximum	N/mm ²	121	124	126	124	122	123
Résistance à la rupture	N/mm ²	94	99	114	79	120	120
Allongement à l'effort maximum	%	5,1	6,6	6,3	5	5,5	5,9
Allongement à la rupture	%	8,3	11	8,9	10,1	6	6,8
Cisaillement							
Résistance à la rupture	N/mm ²	48	47	44	48	48	44
Compression							
Module	N/mm ²						
Contrainte au seuil d'écoulement	N/mm ²	107	104	102	110	100	101
Déformation seuil d'écoulement		12,7	14,4	15,6	12,7	12,7	14,6
Choc Charpy Résilience	kJ/m²	56			57		
	KJ/III	30			37		
Transition vitreuse DSC		0.7	0.0	0.0			.=
Tg onset	°C	67	82	86	69	79	87
Tg max onset	°C			86			87

Ces cycles de cuissons sont appliqués après une période de durcissement de 24 h à température ambiante, permettant de dépasser le de la réaction.

Propriétés mécaniques sur résine pure :

		SF	R 8100 / SD 47	771
		24 h Ta + 24 h 40 °C	24 h Ta + 16 h 60 °C	24 h Ta + 8 h 80 °C
Traction				
Module	N/mm ²	3 360	3 120	3 000
Résistance maximum	N/mm ²	69	73	73
Résistance à la rupture	N/mm ²	54	61	62
Allongement à l'effort maximum	%	3,6	4,3	4,7
Allongement à la rupture	%	6,6	7,3	7,2
Flexion				
Module	N/mm ²	3 090	2 920	2 900
Résistance maximum	N/mm ²	115	116	119
Résistance à la rupture	N/mm ²	55	73	94
Allongement à l'effort maximum	%	5	5,6	6,2
Allongement à la rupture	%	15,2	11,7	10,3
Cisaillement				
Résistance à la rupture	N/mm²	47	43	53
Compression				
Module	N/mm ²			
Contrainte au seuil d'écoulement	N/mm ²	105	99	99
Déformation seuil d'écoulement	%	12,2	13,2	14,1
Choc Charpy				
Résilience	kJ/m²	22		
	KO/III	22		
Transition vitreuse DSC	0.0			
Tg onset	°C	68	81	89
Tg max onset	°C			90
		I .	l .	I .

Ces cycles de cuissons sont appliqués après une période de durcissement de 24 h à température ambiante, permettant de dépasser le de la réaction.

Les essais ont été effectués sur des échantillons de résine coulée sans dégazage préalable, entre les plaques d'acier.

Mesures prises selon les normes suivantes :

Tests mécaniques :

Traction: ISO 527-2 Flexion: ISO 178

Compression: ISO 604 ou NF EN ISO 844 (produit alvéolaire)

Choc Charpy: NF EN ISO 179-1

Cisaillement: ASTM D732-17 (Punch Tool)

Résistance à la fissuration inter laminaire : ASTM D5528-13 Ténacité à la rupture (GIC et KIC) : ISO 13586

Norme interne. Réticulation selon la mise en oeuvre et la cuisson indicative, Vieillissement humide et reprise en eau :

pesée, immersion dans l'eau distillée à 70 °C / 48 h, pesée 1 h après émersion.

Résistance des collages

en cisaillement double lapshear: ASTM D3528-96

> ADH = rupture adhésive COH = rupture cohésive

TLC = rupture cohésive à l'interface colle / support FT = rupture de la fibre du support composite LFT = rupture des fibres à l'interface colle / support

Tests thermiques

NF EN ISO 11357-2 -5°C à 180°C sous balayage d'azote Transition vitreuse par DSC:

> T_{a1} ou onset: 1er passage à 20 °C/min 2ème passage à 20 °C/min T_{a1} maximum ou onset :

Transition vitreuse DMTA: 0 °C à 180 °C @ 2 °C/min, épaisseur 4 mm dans l'air

> T_a onset G' ISO 11357-1 ASTM D4065-12 T_a pic G"

Tests physiques:

Couleur Gardner: NF EN ISO 4630 Méthode visuelle

Indice de réfraction : NF ISO 280

Viscosité: NF EN ISO 3219 Rhéomètre CP 50 mm à 10 s⁻¹

Densité des liquides: ISO 2811-1 Pycnomètre

Densité des poudres: NF EN ISO 1183-3 Pycnomètre à hélium

Densité des mousses : NF EN ISO 845

Temps de ael : Croisement G' G"Rhéomètre PP 50 mm à 10 s⁻¹ ASTM D6866-16 ou XP CEN/TS 16640 Avril 2014 Taux de carbone vert :

 $T\Delta$ · Température Ambiante (de 20 à 25 °C)

NC: Non Communiqué

NB: Pas de rupture (flexion max à 15 % de déformation)

Tableau 1ère page :

Pot Life: Temps pour atteindre 50 °C ou temps limite d'utilisation du mélange Temps de gel:

Intersection des tangentes sur la courbe de viscosité d'un mélange sur

1 mm d'épaisseur

Temps de démoulage : Temps nécessaire pour obtenir les résistances mécaniques suffisantes à un

démoulage

Temps de mise sous vide mini : Temps à partir duquel on peut appliquer du vide (25 000 mPa.s)

Temps de mise sous vide maxi: Temps limite en dessous duquel on peut appliquer du vide (Croisement G'G")

Temps pour lequel la viscosité atteint 400 mPa.s Temps d'infusion optimal : Temps d'infusion max : Temps pour lequel la viscosité atteint 25 000 mPa.s Temps de coupure du vide : Temps pour atteindre le croisement G'G" + 20 %

SICOMIN Composites 31, avenue. de la Lardière BP 23 13161 Châteauneuf-les-Martigues Cedex – France Tel: +33 (0)4 42 42 30 20 Fax: +33 (0)4 42 81 29 29

Mention légale :

Les informations que nous donnons par écrit ou verbalement dans le cadre de notre assistance technique et de nos essais n'engagent pas notre responsabilité. Elles sont fournies en toute bonne foi et se fondent sur la connaissance et l'expérience que la Société SICOMIN a acquises à ce jour de ses produits lorsqu'ils ont été convenablement stockés, manipulés et appliqués dans des conditions normales conformément aux recommandations de SICOMIN. Nous conseillons donc, aux utilisateurs des systèmes époxydes SICOMIN, de vérifier par des essais pratiques si nos produits conviennent aux procédés et applications envisagés. Le stockage, l'utilisation, la mise en œuvre et la transformation des produits fournis échappent à notre contrôle et relèvent exclusivement de votre responsabilité. SICOMIN se réserve le droit de modifier les propriétés du produit. Toutes les caractéristiques spécifiées dans cette Fiche technique sont basées sur des tests de laboratoire. Les mesures et leurs tolérances effectives peuvent varier pour différentes raisons. Si notre responsabilité devait néanmoins se trouver engagée, elle se limiterait, pour tous les dommages, à la valeur de la marchandise fournie par nous et mise en œuvre par vos soins. Nous garantissons la qualité irréprochable de nos produits dans le cadre de nos conditions générales de ventes et de livraison. Les utilisateurs doivent impérativement consulter la version la plus récente de la fiche technique locale correspondant au produit concerné, qui leur sera remise sur demande.

Mix total

SR 8100	Partie Résine + Partie Durcisseur (kg)	Partie Résine (kg)	Partie Durcisseur (kg)
	1,51	1,17	0,34
SD 4775	7,46	5,78	1,68
30 4773	30,06	23,4	6,66
	258,05	200	3 x 19,35
	1,51	1,17	0,34
CD 4772	7,46	5,78	1,68
SD 4773	30,06	23,4	6,66
	258,05	200	3 x 19,35
	1,51	1,17	0,34
OD 4774	7,46	5,78	1,68
SD 4771	30,06	23,4	6,66
	258,05	200	3 x 19,35